In this study, porous methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6 nanocomposites were synthesized via a facile solution casting protocol. The physicochemical properties of the prepared materials were studied using various characterization techniques including Fourier transform-infrared spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption/desorption. After characterization of the materials, the prepared nanocomposites were applied as novel adsorbents for the removal of Pb(II) from aqueous media. In this regard, the effect of various parameters including solution pH, adsorbent amount, contact time, and initial concentration of Pb(II) on the adsorption process was investigated. To study the mechanism of adsorption, kinetic studies were conducted. The kinetic models of pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion were employed. The results revealed that the adsorption of Pb(II) onto methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6 adsorbents followed the pseudo-second-order kinetic model. Also, different isotherms including Langmuir, Freundlich, and Dubinin-Radushkevich were applied to evaluate the equilibrium adsorption data. Langmuir isotherm provided the best fit with the equilibrium data of both adsorbents with maximum adsorption capacities of 99.0 and 94.3 mg g-1 for methacrylate-modified FDU-12/poly(methyl methacrylate) and amine-modified FDU-12/Nylon 6, respectively, for the removal of Pb(II).