A hydrazone Schiff base ligand was synthesized by the condensation of 3-formyl-4-hydroxycoumarin and oxalyldihydrazide in the molar ratio 2:1. The Schiff base ligand acts as a mono-, bi-, tri- or even tetradentate ligand with metal cations in the molar ratios 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes as keto or enol isomers, where M = Co(II), Ni(II), Cu(II), VO(IV), and Fe(III). The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, mass, and UV–Vis spectroscopy. Furthermore, the magnetic moments were calculated from the measured electric conductivities of the complexes. According to the received data, the dihydrazone ligand contains one or two units of ONO domains and can bind to the metal ions via the azomethine nitrogen, the carbonyl oxygen atoms, and/or the phenolic oxygen atoms. Electronic spectra and the magnetic moments of all complexes show that the complexes’ geometries are either octahedral, tetrahedral, square planar, or square pyramidal. Cyclic voltammograms of the mononuclear Co(II) and Ni(II) complexes show quasi-reversible peaks. Tests against two pathogenic bacteria as Gram-positive and Gram-negative bacteria for both, the Schiff base ligand and its metal complexes were carried out. In addition, also one kind of fungi was tested. The synthesized complexes demonstrate mild antibacterial and antifungal activities against these organisms.Graphical abstract
Electronic supplementary materialThe online version of this article (doi:10.1007/s00706-017-2075-9) contains supplementary material, which is available to authorized users.