Three new 1,10-phenanthroline and 2,2'-bipyridine mixed-ligand complexes of [Co(bpy)(phen)2](NO3)2.2H2O, [Cu(bpy)(phen) H2O)2]Cl2 . 2H2O, and [Zn(bpy)2(phen)]Cl2 . 6H2O were synthesized. The complexes were characterized by elemental, IR and visible spectroscopic analyses and the results indicate that both ligands are coordinated to the respective metal ions giving octahedral complexes. Antimicrobial studies showed that there is increased antimicrobial activity of the metal ions on coordination to the ligands. The water soluble complexes showed antimicrobial activities that are higher than those of the metal salts and 2,2'bipyridine but lower than those of 1,10-phenanthroline. The copper complex [Cu(bpy)(phen)(H2O)2]Cl2 . 2H2O shows the highest activity.
KEY WORDS KEY WORDS KEY WORDS
A novel one-dimensional zigzag coordination polymer, dinitrodiaqua-bis(hexamethylenetetramine)cobalt(II) was synthesised and characterised, and the structure was determined by single-crystal X-ray diffraction. The compound has a chain structure with each cobalt atom covalently bonded to two nitrate ions, two water molecules and two HMTA molecules, giving a slightly distorted octahedral geometry about the cobalt atom. Each HMTA ligand uses two of its N atoms to bond to two cobalt atoms giving an approximately bent Co-HMTA-Co configuration. Each chain is hydrogen bonded through OHÁÁÁN and OHÁÁÁO interactions with neighbouring chains leading to an overall polymer structure. Thermal studies show significant mass loss corresponding to the loss of the coordinated water molecules and the decomposition of both the nitrate ions and the HMTA.
A tridentate Schiff base ligand, (E)-2-(4-dimethylbenzydimino) glycylglycine (glygly-DAB), derived from the condensation of 4-Dimethylaminobenzaldehyde (DAB) and glycylglycine (glygly) together with its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and characterized using various physico-chemical methods including C,H,N elemental analysis, melting point determination, molar conductivity measurement, IR, 1 H NMR and UV-Vis. The ligand and metal complexes were screened in vitro for antimicrobial and antifungal activities on four bacterial strains (Staphylococcus aureus, Escherichia coli, Salmonella thyphi and Pseudomonas aeruginosa) and two fungal strains (Candida albicans and Cryptococcus neoformans). glygly-DAB showed remarkable antifungal activities on all the fungal strains and antibacterial activities on one bacterial strain.
A novel tridentate Schiff base, 1-((E)-(2-mercaptophenylimino) methyl) naphthalen-2-ol (H2L1), was synthesized by the condensation reaction of 2-hydroxy-1-naphthaldehyde with 2-aminothiophenol in absolute ethanol. The resulting ligand was reacted with Co(II), Ni(II), and Cu(II) ions to obtain tetrahedral CoL1, NiL1, and square planar CuL1 complexes. The Schiff base and its metal complexes were characterized using 1H-NMR, microanalysis, FT-IR, UV-visible, and mass spectroscopy (ESI-MS). All the compounds are soluble in DMSO and DMF. Spectroscopic studies show that the ligand coordinates to the metal center through the azomethine nitrogen, naphthoxide oxygen, and thiophenoxide sulfur to form a tridentate chelate system. Conductance measurements show that these compounds are molecular in solution. Cyclic voltammetry studies show Co(III)/Co(II) and Cu(II)/Cu(I) redox systems to be quasi-reversible involving a monoelectronic transfer while Ni(III)/Ni(II) was irreversible. In vitro antibacterial and antifungal activity against five bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Proteus mirabilis) and five fungal strains (Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsilosis) showed no antifungal activity but moderate antibacterial activity on E. coli, S. aureus, P. aeruginosa, and P. mirabilis bacterial strains. Antioxidant studies reveal that the ligand and its Cu(II) complex are more potent than Co(II) and Ni(II) complexes to eliminate free radicals.
Potentiometric studies in aqueous medium and spectrophotometric study in non-aqueous medium were used to understand the behavior of hexamethylenetetramine (HMTA) complexes. The protometric studies of HMTA enabled us to confirm that only one basic site of this ligand is protonated in acidic medium and this ligand is decomposed in acidic medium. In aqueous medium, only hexa-aqua complexes in which HMTA is present in the second coordination sphere forming H-bonds with hydrogen atoms of coordinated and uncoordinated water molecules are obtained. In non-aqueous solvents, HMTA coordinates to metal ions displaying diversity in the structures of the resulting complexes in which HMTA can either be monodentate, bridged bidentate, tridentate, or tetradentate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.