A novel tridentate Schiff base, 1-((E)-(2-mercaptophenylimino) methyl) naphthalen-2-ol (H2L1), was synthesized by the condensation reaction of 2-hydroxy-1-naphthaldehyde with 2-aminothiophenol in absolute ethanol. The resulting ligand was reacted with Co(II), Ni(II), and Cu(II) ions to obtain tetrahedral CoL1, NiL1, and square planar CuL1 complexes. The Schiff base and its metal complexes were characterized using 1H-NMR, microanalysis, FT-IR, UV-visible, and mass spectroscopy (ESI-MS). All the compounds are soluble in DMSO and DMF. Spectroscopic studies show that the ligand coordinates to the metal center through the azomethine nitrogen, naphthoxide oxygen, and thiophenoxide sulfur to form a tridentate chelate system. Conductance measurements show that these compounds are molecular in solution. Cyclic voltammetry studies show Co(III)/Co(II) and Cu(II)/Cu(I) redox systems to be quasi-reversible involving a monoelectronic transfer while Ni(III)/Ni(II) was irreversible. In vitro antibacterial and antifungal activity against five bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Proteus mirabilis) and five fungal strains (Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsilosis) showed no antifungal activity but moderate antibacterial activity on E. coli, S. aureus, P. aeruginosa, and P. mirabilis bacterial strains. Antioxidant studies reveal that the ligand and its Cu(II) complex are more potent than Co(II) and Ni(II) complexes to eliminate free radicals.
A tridentate Schiff base ligand, (E)-2-(4-dimethylbenzydimino) glycylglycine (glygly-DAB), derived from the condensation of 4-Dimethylaminobenzaldehyde (DAB) and glycylglycine (glygly) together with its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and characterized using various physico-chemical methods including C,H,N elemental analysis, melting point determination, molar conductivity measurement, IR, 1 H NMR and UV-Vis. The ligand and metal complexes were screened in vitro for antimicrobial and antifungal activities on four bacterial strains (Staphylococcus aureus, Escherichia coli, Salmonella thyphi and Pseudomonas aeruginosa) and two fungal strains (Candida albicans and Cryptococcus neoformans). glygly-DAB showed remarkable antifungal activities on all the fungal strains and antibacterial activities on one bacterial strain.
Potentiometric studies in aqueous medium and spectrophotometric study in non-aqueous medium were used to understand the behavior of hexamethylenetetramine (HMTA) complexes. The protometric studies of HMTA enabled us to confirm that only one basic site of this ligand is protonated in acidic medium and this ligand is decomposed in acidic medium. In aqueous medium, only hexa-aqua complexes in which HMTA is present in the second coordination sphere forming H-bonds with hydrogen atoms of coordinated and uncoordinated water molecules are obtained. In non-aqueous solvents, HMTA coordinates to metal ions displaying diversity in the structures of the resulting complexes in which HMTA can either be monodentate, bridged bidentate, tridentate, or tetradentate.
A new hydrogen bonded Cobalt(II) Schiff base complex, N'-(pyridine-4-carboxaldehyde) isonicotinoylhydrazone Cobalt(II), has been synthesized from isoniazid and pyridine-4-carboxaldehyde and characterized by IR spectroscopy, 1 H-NMR, elemental analysis, TGA and single crystal X-ray structure determination. X-ray crystal structure analysis shows an octahedral complex with a metal centre coordinated to two ligand molecules through the pyridine nitrogen atoms and four water molecules and containing two nitrate groups as counter ions. The complex crystallizes in the monoclinic crystal system and P2(1)/n space group. The unit cell dimensions are: a = 7.2108(4) Å, b = 16.6020(9) Å, c = 13.0389(6) Å, α = 90˚, β = 103.972(4)˚, γ = 90˚. The molecule is symmetrical about the cobalt centre as observed from the 1 H-NMR and 13 C-NMR and confirmed by the single crystal X-ray structure of the complex. Thermogravimetric analysis shows two steps decomposition of the complex to leave a metal oxide residue. The title compound is expected to be biologically active as one of the precursors (isoniazid) is a therapeutic agent with well-established clinical applications.
This paper carries out the effects of the extraction methods on the quantities and qualities of vegetable oil from Ricinus communis. The same initial quantities of Ricinus communis were used to extract oil by the physical methods, hot and cold hydraulic press, and screw press; and the chemical method of solvent extraction using various solvents at the same temperature. The resulting oils were characterized to obtain the acid index, saponification index, iodine index, peroxide index, water content, specific density, kinematic viscosity at 40°C, color, hydrogen potential (pH), refractive index, the fatty acid profile of the oils by gas chromatography (GC) and the density at 15°C; in accordance with the ASTM standard specification. The results obtained show that, quantitatively, the hydraulic press has the best yield (46.25%) and qualitatively, the screw press extract has the best properties on a wide range of properties. This result allows us to conclude that the extraction methods depend on the use or application of the vegetable oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.