Two compounds, 9,10-bis[2-(quinolyl)vinyl]anthracene (BQVA) and 9,10-bis[2-(naphthalen-2-yl)vinyl]anthracene (BNVA), have been synthesised and investigated. Both of them have aggregation-induced enhanced emission (AIEE) properties. Heteroatom-assisted BQVA shows solvatochromism, reversible chromism properties and self-assembly effects. When increasing the solvent polarities, the green solution of BQVA turns to orange with a redshift of the fluorescence emission wavelengths from λ=527 to 565 nm. Notably, BQVA exhibits reversible chromism properties, including mechano- and thermochromism. The as-prepared BQVA powders show green fluorescence (λem=525 nm) and the colour can turn into orange (λem=573 nm) after grinding. Interestingly, the orange colour can return at high temperature. Based on these reversible chromism properties, a simple and convenient erasable board has been designed. Different from BQVA, non-heteroatom-assisted BNVA has no clear chromic processes. The results obtained from XRD, differential scanning calorimetry, single-crystal analysis and theoretical calculations indicate that the chromic processes depend on the heteroatoms in BQVA. Additionally, BQVA also exhibits excellent self-assembly effects in different solvents. Homogeneous nanospheres are formed in mixtures of tetrahydrofuran and water, which are then doped into silica nanoparticles and treated with 3-aminopropyltriethoxysilane to give amino-functionalised nanoparticles (BQVA-AFNPs). The BQVAAFNPs could be used to stain protein markers in polyacrylamide gel electrophoresis.