This paper takes the data of a university graduate as the research object. By consulting various literatures and literature analyses, we can understand the impact of students’ academic performance, English level, and other activities on students’ employment development and select data on this basis. The collected data is cleaned, integrated, and transformed to form a standard data set. The factors affecting graduates’ employment are complex and diverse, with high data feature dimensions, sparse links between features, complex and diverse attributes, and both discrete and continuous features. According to the characteristics of college students’ employment data, this paper uses the deep-seated neural network with strong learning ability and adaptability to predict college students’ employment, so as to provide guidance for college students’ employment. Firstly, based on deep learning and Feedforward Neural Network technology, a prediction model of college students’ employment destination with six influencing factors is established, and the prediction accuracy of the model is evaluated. The ACC value and loss value are used as indicators to test whether the prediction effect of the prediction model is good. The results show that the prediction effect of the model is worthy of further research and optimization. Finally, combined with the actual data of graduates, the practical application of the prediction model is analyzed. Compared with the traditional machine learning algorithm, the effectiveness of the algorithm is verified.