Understanding the interactions between solvent molecules and cellulose at a molecular level is still not fully achieved in cellulose/N,N-dimethylacetamide (DMAc)/LiCl system. In this paper, cellobiose was used as the model compound of cellulose to investigate the interactions in cellulose/DMAc/LiCl solution by using Fourier transform infrared spectroscopy (FTIR), (13)C, (35)Cl, and (7)Li nuclear magnetic resonance (NMR) spectroscopy and conductivity measurements. It was found that when cellulose is dissolved in DMAc/LiCl cosolvent system, the hydroxyl protons of cellulose form strong hydrogen bonds with the Cl(-), during which the intermolecular hydrogen bonding networks of cellulose is broken with simultaneous splitting of the Li(+)-Cl(-) ion pairs. Simultaneously, the Li(+) cations are further solvated by free DMAc molecules, which accompany the hydrogen-bonded Cl(-) to meet electric balance. Thereafter, the cellulose chains are dispersed in molecular level in the solvent system to form homogeneous solution. This work clarifies the interactions in the cellulose/DMAc/LiCl solution at molecular level and the dissolution mechanism of cellulose in DMAc/LiCl, which is important for understanding the principle for selecting and designing new cellulose solvent systems.
Probiotics and prebiotics for preventing and alleviating the degenerative changes associated with aging have received extensive attention. In the present work, Lactobacillus plantarum (L. plantarum) 69-2 with the highest antioxidant capacity combined with galacto-oligosaccharide (GOS) was used in aging model mice to evaluate the effect on aging and the regulation of gut microbiota. The combination of L. plantarum 69-2 and GOS supplementation could significantly (P < 0.05) improve liver function, antioxidant capacity, and inflammation accompanied by regulating the gut microbiota, increasing the short chain fatty acid (SCFA) levels, and activating the hepatic AMPK/SIRT1 regulatory pathway. The results showed that L. plantarum 69-2 and GOS could activate the hepatic AMPK/SIRT1 signaling pathway by regulating the gut microbiota and metabolites through the liver-gut axis to restore hepatic antioxidant activity to alleviate aging. The study provided a new insight for targeting the gut microbiota to relieve aging through the gut-liver axis.
BackgroundCancers have a multifactorial etiology a part of which is genetic. Recent data indicate that expression of the tight junction claudin proteins is involved in the etiology and progression of cancer.MethodsTo explore the correlations of the tight junction proteins claudin-2,-6, and −11 in the pathogenesis and clinical behavior of gastric cancer, 40 gastric cancer tissues and 28 samples of non-neoplastic tissues adjacent to the tumors were examined for expression of claudin-2,-6, and −11 by streptavidin-perosidase immunohistochemical staining method.ResultsThe positive expression rates of claudin-2 in gastric cancer tissues and adjacent tissues were 25% and 68% respectively (P < 0.001). The positive expression rates of claudin-6 in gastric cancer tissues and adjacent tissues were 55% and 79% respectively (P = 0.045 < 0.05). In contrast, the positive expression rates of claudin-11 in gastric cancer tissues and gastric cancer adjacent tissues were 80% and 46% (P = 0.004 < 0.01). Thus in our study, the expression of claudin-2, and claudin-6 was down regulated in gastric cancer tissue while the expression of claudin-11 was up regulated. Correlations between claudin expression and clinical behavior were not observed.ConclusionOur study provides the first evidence that claudin-2,-6, and −11 protein expression varies between human gastric cancers and adjacent non-neoplastic tissues.Virtual slidesThe virtual slide(s) for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/5470513569630744
Shortage of red blood cells (RBCs, erythrocytes) can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs), but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs) by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.