Background: Microsatellite stable (MSS) colorectal cancer (CRC) represents ~85% of all CRCs. These tumors are poorly immunogenic and largely resistant to immunotherapy, necessitating a need to develop new immune enhancing strategies. Oncolytic reovirus has a high propensity to replicate in KRAS mutant tumors which account for ~50% of MSS CRCs. Current study explores the ability of reovirus to potentiate the effect of immune checkpoint inhibition in MSS CRC. Methods: Effectiveness of reovirus infection was quantified through MTT assay for cell viability, and expression of immune-response genes by flow cytometry, RT-qPCR, and microarray. Computational analysis of differentially expressed genes was performed by TAC, DAVID and STRING. Combinatorial approach using anti-PD-1 monoclonal antibody was assessed in ex vivo and in vivo models. Live-cell imaging, tumor volume and survival were measured for quantification of anti-tumor activity. Expression of pattern recognition receptors (PRRs), cell surface and activation markers of immune cells, and PD-1/PD-L1 axis were studied using multi-color flow cytometry, immunoblotting, immunohistochemistry, and immunofluorescence. Results: Reovirus infection exerted growth arrest and expression of immune-response genes in CRCs cell lines in a KRAS-dependent manner. However, microsatellite instability, rather than KRAS status determined immune-repose pathways, functionalities and biological processes post-reovirus infection. Furthermore, reovirus significantly enhanced the anti-tumor activity of anti-human PD-1 [nivolumab] treatment in MSS CRC cell lines ex vivo. Similarly, reovirus increased the activity of anti-mouse PD-1 treatment in the CT26 [MSS, KRASMut], but not the MC38 [MSI, KRASWt] syngeneic mouse model of CRC. Combinatorial treatment has reduced the proliferative index, increased apoptosis and differentially altered PD-L1/PD-1 signaling among CT26 and MC38 tumors. Activation of innate immune system and expression of PRRs and antigen presentation markers were observed under reovirus and anti-PD-1 treatment that additionally reduced immunosuppressive macrophages. This led to an increase in T cell subsets, increase in effector T cell activation, and decrease in exhaustion markers specifically within CT26 microenvironment. Conclusion: The current study systematically evaluates immune characteristics and immune microenvironment of CRC under reovirus/anti-PD-1 combination treatment that proves increased effectiveness among MSS compared to MSI CRCs. This is a promising regimen warranting translation into clinical trials.