Traditionally, in supervised machine learning, (a significant) part of the available data (usually 50%-80%) is used for training and the rest-for validation. In many problems, however, the data are highly imbalanced in regard to different classes or does not have good coverage of the feasible data space which, in turn, creates problems in validation and usage phase. In this paper, we propose a technique for synthesizing feasible and likely data to help balance the classes as well as to boost the performance in terms of confusion matrix as well as overall. The idea, in a nutshell, is to synthesize data samples in close vicinity to the actual data samples specifically for the less represented (minority) classes. This has also implications to the socalled fairness of machine learning. In this paper, we propose a specific method for synthesizing data in a way to balance the classes and boost the performance, especially of the minority classes. It is generic and can be applied to different base algorithms, for example, support vector machines, k-nearest neighbour classifiers deep neural, rule-based classifiers, decision trees, and so forth. The results demonstrated that (a) a significantly more balanced (and fair) classification results can be achieved and (b) that the overall performance as well as the performance per class measured by confusion matrix can be boosted. In Xiaowei Gu and Plamen P. Angelov contributed equally to this study.