The ERMs (ezrin, radixin and moesin) and the closely related merlin (NF2) participate in signaling events at the cell cortex through interactions mediated by their conserved FERM domain. We systematically investigated the FERM domain mediated interactions with short linear motifs (SLiMs) by screening the FERM domains againsts a phage peptidome representing intrinsically disordered regions of the human proteome. We uncovered a diverse set of interacting partners with similar but distinct binding motifs (FYDF, xYxV, FY(D/E)L and LQE(I/L) that bind to distinct binding pockets. We validated interactions between moesin and merlin FERM domains and full-length FAM83G, HIF1A, LATS1, NOP53, PAK6, RRBP1 and ZNF622 through pull-down experiments. Using biophysical binding assays, we determined affinities of, and uncovered allosteric interdependencies between, different binding partners, suggesting that the FERM domain acts as a switchable interaction hub. Using Rosetta FlexPepDock computational peptide docking protocols, we investigated the energy landscapes of identified interactions, which provide a detailed molecular understanding of the binding of the distinct binding motifs, as well as possible allosteric interconnections. This study demonstrates how experimental and computational approaches together can unravel a complex system of protein-peptide interactions that includes a family of proteins with multiple binding sites that interact with similar but distinct binding motifs.HighlightsWe screened the human disorderome for motif-containing partners of the FERM domainsWe expand the ERM and merlin interactomes of the ERMs and merlinWe identify four distinct motif classes that bind the ERM and merlin FERM domains: FYDF, xYxV, FY(D/E)L and LQE(I/L)In-vitro and in-silico data suggest that the FYDF motif binds to the F3a site and that xYxV motif binds to the F3b siteIn-silico modelling sheds light on the underlying conformational changes responsible for ligand interdependenciesAbstract Figure