Clouds and aerosols play essential roles in regulating surface incident solar radiation (Rs). It has been suggested that the increased aerosol loading over China is a key factor for the decadal variability in Rs and can explain the bias in its trend from reanalyses because the reanalyses do not include the interannual variability of aerosols. In this study, we compare the Rs derived from sunshine duration at 2,400 weather stations in China and that from five reanalyses from 1980 to 2014. The determining factors for the biases in the mean values and trends of Rs from the reanalyses are examined, with the help of Rs and the cloud fraction (CF), from satellite and 2,400 weather stations. Our results show that all reanalyses overestimate the multiyear Rs by 24.10–40.00 W/m2 due to their underestimations of CF, which is more obvious in southern China. The biases in the simulated CF in the reanalyses can explain the biases in Rs by 55–41%, and the bias in clear‐sky surface solar radiation (Rc), which is primarily due to biases in aerosol loading, can explain 32–9% of the bias in Rs. The errors in the trend of the simulated CF can explain the errors in the Rs trends in the reanalyses by 73–12%, and the trend errors in the Rc can explain 43–30% of the trend error in Rs. Our study suggests that more work is needed to improve the simulation of aerosols, clouds, and aerosol‐cloud‐radiation interactions in the reanalyses.