Abstract. We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers.
What: Hundreds of scientists involved in the development and evaluation of weather and climate models held an international workshop to discuss the nature and causes of systematic model errors across time scales.
The exigencies of the global community toward Earth system science will increase in the future as the human population, economies, and the human footprint on the planet continue to grow. This growth, combined with intensifying urbanization, will inevitably exert increasing pressure on all ecosystem services. A unified interdisciplinary approach to Earth system science is required that can address this challenge, integrate technical demands and long-term visions, and reconcile user demands with scientific feasibility. Together with the research arms of the World Meteorological Organization, the Young Earth System Scientists community has gathered early-career scientists from around the world to initiate a discussion about frontiers of Earth system science. To provide optimal information for society, Earth system science has to provide a comprehensive understanding of the physical processes that drive the Earth system and anthropogenic influences. This understanding will be reflected in seamless prediction systems for environmental processes that are robust and instructive to local users on all scales. Such prediction systems require improved physical process understanding, more high-resolution global observations, and advanced modeling capability, as well as high-performance computing on unprecedented scales. At the same time, the robustness and usability of such prediction systems also depend on deepening our understanding of the entire Earth system and improved communication between end users and researchers. Earth system science is the fundamental baseline for understanding the Earth’s capacity to accommodate humanity, and it provides a means to have a rational discussion about the consequences and limits of anthropogenic influence on Earth. Without its progress, truly sustainable development will be impossible.
The scope of this work was to evaluate simulated carbon monoxide (CO) and aerosol optical depth (AOD) from the CAM-chem model against observed satellite data and additionally explore the empirical relationship of CO, AOD and fire radiative power (FRP). The simulated seasonal global concentrations of CO and AOD were compared, respectively, with the Measurements of Pollution in the Troposphere (MOPITT) and the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite products for the period 2010–2014. The CAM-chem simulations were performed with two configurations: (A) tropospheric-only; and (B) tropospheric with stratospheric chemistry. Our results show that the spatial and seasonal distributions of CO and AOD were reasonably reproduced in both model configurations, except over central China, central Africa and equatorial regions of the Atlantic and Western Pacific, where CO was overestimated by 10–50 ppb. In configuration B, the positive CO bias was significantly reduced due to the inclusion of dry deposition, which was not present in the model configuration A. There was greater CO loss due to the chemical reactions, and shorter lifetime of the species with stratospheric chemistry. In summary, the model has difficulty in capturing the exact location of the maxima of the seasonal AOD distributions in both configurations. The AOD was overestimated by 0.1 to 0.25 over desert regions of Africa, the Middle East and Asia in both configurations, but the positive bias was even higher in the version with added stratospheric chemistry. By contrast, the AOD was underestimated over regions associated with anthropogenic activity, such as eastern China and northern India. Concerning the correlations between CO, AOD and FRP, high CO is found during March–April–May (MAM) in the Northern Hemisphere, mainly in China. In the Southern Hemisphere, high CO, AOD, and FRP values were found during August–September–October (ASO) due to fires, mostly in South America and South Africa. In South America, high AOD levels were observed over subtropical Brazil, Paraguay and Bolivia. Sparsely urbanized regions showed higher correlations between CO and FRP (0.7–0.9), particularly in tropical areas, such as the western Amazon region. There was a high correlation between CO and aerosols from biomass burning at the transition between the forest and savanna environments over eastern and central Africa. It was also possible to observe the transport of these pollutants from the African continent to the Brazilian coast. High correlations between CO and AOD were found over southeastern Asian countries, and correlations between FRP and AOD (0.5–0.8) were found over higher latitude regions such as Canada and Siberia as well as in tropical areas. Higher correlations between CO and FRP are observed in Savanna and Tropical forests (South America, Central America, Africa, Australia, and Southeast Asia) than FRP x AOD. In contrast, boreal forests in Russia, particularly in Siberia, show a higher FRP x AOD correlation than FRP x CO. In tropical forests, CO production is likely favored over aerosol, while in temperate forests, aerosol production is more than CO compared to tropical forests. On the east coast of the United States, the eastern border of the USA with Canada, eastern China, on the border between China, Russia, and Mongolia, and the border between North India and China, there is a high correlation of CO x AOD and a low correlation between FRP with both CO and AOD. Therefore, such emissions in these regions are not generated by forest fires but by industries and vehicular emissions since these are densely populated regions.
<p>Vegetation fires &#8211; including the application of fire in land use, land-use change and uncontrolled wildfire &#8211; affect the functioning of the Earth System and impose significant threats to public health and security.&#160; This paper presents the concept of a Vegetation Fire and Smoke Pollution Warning Advisory and Assessment System (VFSP-WAS<sup>*</sup>). It describes the scientific rationale for the system and provides guidance for addressing the issues of vegetation fire and smoke pollution, including key research challenges. The paper&#160; proposes the establishment of VFSP-WAS regional centers and describes&#160; Potential examples of&#160; this VFSP-WAS concept are described from two regions in (South-East Asia and North America) where regional centers will partner with Regional Fire Monitoring / Fire Management Resource Centers.</p><p>*) https://community.wmo.int/activity-areas/gaw/science/modelling-applications/vfsp-was&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.