The precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (named TMPA and TMPA-RT for the near real-time version) are widely used both in research and in operational forecasting. However, they will be discontinued soon. The products from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and The Global Satellite Mapping of Precipitation (GSMaP) are analyzed as potential replacements for TMPA products. The objective of this study is to assess whether the IMERG and/or GSMaP products can properly replace TMPA in several regions with different precipitation regimes within Brazil. The validation study was conducted during the period from 1st of April, 2014 to the 28th of February, 2017 (1065 days), using daily accumulated rain gauge stations over Brazil. Six regions were considered for this study: five according to the precipitation regime, plus another one for the entire Brazilian territory. IMERG-Final, TMPA-V7 and GSMaP-Gauges were the selected versions of those algorithms for this validation study, which include a bias adjustment with monthly (IMERG and TMPA) and daily (GSMaP) gauge accumulations, because they are widely used in the user's community. Results indicate similar behavior for IMERG and TMPA products, showing that they overestimate precipitation, while GSMaP tend to slightly underestimate the amount of rainfall in most of the analyzed regions. The exception is the northeastern coast of Brazil, where all products underestimate the daily rainfall accumulations. For all analyzed regions, GSMaP and IMERG products present a better performance compared to TMPA products; therefore, they could be suitable replacements for the TMPA. This is particularly important for hydrological forecasting in small river basins, since those products present a finer spatial and temporal resolution compared with TMPA.
Air pollution is an important public health issue. High levels of carbon monoxide in the atmosphere are hazardous to human health. Studies regarding the concentration of this and other gases in the atmosphere allow political actions to manage and reduce the emission of pollutants. In this context, this paper studied the annual, seasonal, weekly and daily variations of carbon monoxide (CO) concentration for the Metropolitan Region of São Paulo (MRSP). We studied three sites in the MRSP, two of them are located in areas under the influence of heavy vehicle traffic (Osasco and Congonhas) and the third one in a city park (Ibirapuera Park). The results showed high influence of gasoline vehicles on CO emission. In the annual scale, CO concentration decreased due to improvements in emission technology, despite the increasing number of vehicles. CO emission showed a seasonal, weekly and diurnal cycle associated to meteorological conditions and emission patterns. The highest values of mean concentration were observed in June/July for Osasco (2.20 ppm), Congonhas (2.04 ppm) and Ibirapuera (1.04 ppm), during the morning, due to weak dispersion of the polluting gases and higher emission from the rush hours.
In January 2020, an extreme precipitation event occurred over southeast Brazil, with the epicentre in Minas Gerais state. Although extreme rainfall frequently occurs in this region during the wet season, this event led to the death of 56 people, drove thousands of residents into homelessness, and incurred millions of Brazilian Reais (BRL) in financial loss through the cascading effects of flooding and landslides. The main question that arises is: To what extent can we blame climate change? With this question in mind, our aim was to assess the socioeconomic impacts of this event and whether and how much of it can be attributed to human-induced climate change. Our findings suggest that human-induced climate change made this event >70% more likely to occur. We estimate that >90,000 people became temporarily homeless, and at least BRL 1.3 billion (USD 240 million) was lost in public and private sectors, of which 41% can be attributed to human-induced climate change. This assessment brings new insights about the necessity and urgency of taking action on climate change, because it is already effectively impacting our society in the southeast Brazil region. Despite its dreadful impacts on society, an event with this magnitude was assessed to be quite common (return period of ∼4 years). This calls for immediate improvements on strategic planning focused on mitigation and adaptation.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.