“…Accordingly, a large number of large-scale reconstructed computational models of cortical function (see Supplemental Table 1, the discussion section and this recent review (Fan and Markram, 2019)), including macaque (Chariker et al, 2016; Schmidt et al, 2018a, 2018b; Schuecker et al, 2017; Zhu et al, 2009), cat (Ananthanarayanan et al, 2009) and mouse/rat (Arkhipov et al, 2018; Billeh et al, 2019) visual cortex, rat auditory cortex (Traub et al, 2005), rat hindlimb sensory cortex (Markram et al, 2015), cerebellum (Sudhakar et al, 2017) and “stereotypical” mammalian neocortex (Izhikevich and Edelman, 2008; Markram, 2006; Potjans and Diesmann, 2014; Reimann et al, 2013; Tomsett et al, 2015), have been introduced, where neuronal dynamics are approximated using neuron models that range from integrate-and-fire point neurons (Ananthanarayanan et al 2009, Sharp et al, 2014; Zhu et al, 2009, Potjans & Diesmann, 2014, Chariker et al 2016, Bernardi et al 2020, Schmidt et al, 2018a, Schmidt et a. 2018b, Schuecker et al 2017) to morphologically reconstructed multi-compartment neurons (Traub et al 2005, Markram et al 2006, Izhikevich & Edelman 2008, Reimann et al 2013, Markram et al 2015, Tomsett et al, 2015, Sudhakar et al 2017, Arkhipov et al 2018, Billeh et al 2019). These models have given insights in a range of topics including the nature of the local field potentials (Reimann et al, 2013; Tomsett et al, 2015), mechanisms of state transitions (Markram et al, 2015), frequency selectivity (Zhu et al, 2009), the influence of single-neuron properties on network activity (Arkhipov et al 2018) and the relation between connectivity patterns and single-cell functional properties (i.e.…”