Within the field of robots in medical education, most of the work done during the last years has focused on surgeon training in robotic surgery, practicing surgery procedures through simulators. Apart from surgical education, robots have also been widely employed in assistive and rehabilitation procedures, where education has traditionally focused in the patient. Therefore, there has been extensive review bibliography in the field of medical robotics focused on surgical and rehabilitation and assistive robots, but there is a lack of survey papers that explore the potential of robotics in the education of healthcare students and professionals beyond their training in the use of the robotic system. The scope of the current review are works in which robots are used as didactic tools for the education of professionals in health sciences, investigating the enablers and barriers that affect the use of robots as learning facilitators. Systematic literature searches were conducted in WOS and Scopus, yielding a total of 3812 candidate papers. After removing duplicates, inclusion criteria were defined and applied, resulting in 171 papers. An in-depth quality assessment was then performed leading to 26 papers for qualitative synthesis. Results show that robots in health sciences education are still developed with a roboticist mindset, without clearly incorporating aspects of the teaching/learning process. However, they have proven potential to be used in health sciences as they allow to parameterize procedures, autonomously guide learners to achieve greater engagement, or enable collective learning including patients and instructors "in the loop". Although there exist documented added-value benefits, further research and efforts needs to be done to foster the inclusion of robots as didactic tools in the curricula of health sciences professionals. On the one hand, by analyzing how robotic technology should be developed to become more flexible and usable to support both teaching and learning processes in health sciences education, as final users are not necessarily well-versed in how to use it. On the other, there continues to be a need to develop effective and standard robotic enhanced learning evaluation tools, as well good quality studies that describe effective evaluation of robotic enhanced education for professionals in health sciences. As happens with other technologies when applied to the health sciences field, studies often fail to provide sufficient detail to support transferability or direct future robotic health care education programs.