Cloud computing is a massive amount of dynamic ad distributed resources that are delivered on request to clients over the Internet. Typical centralized cloud computing models may have difficulty dealing with challenges caused by IoT applications, such as network failure, latency, and capacity constraints. One of the introduced methods to solve these challenges is fog computing which makes the cloud closer to IoT devices. A system for dynamic congestion management brokerage is presented in this paper. With this proposed system, the IoT quality of service (QoS) requirements as defined by the service-level agreement (SLA) can be met as the massive amount of cloud requests come from the fog broker layer. In addition, a forwarding policy is introduced which helps the cloud service broker to select and forward the high-priority requests to the appropriate cloud resources from fog brokers and cloud users. This proposed idea is influenced by the weighted fair queuing (WFQ) Cisco queuing mechanism to simplify the management and control of the congestion that may possibly take place at the cloud service broker side. The system proposed in this paper is evaluated using iFogSim and CloudSim tools, and the results demonstrate that it improves IoT (QoS) compliance, while also avoiding cloud SLA violations.