Cloud computing is a massive amount of dynamic ad distributed resources that are delivered on request to clients over the Internet. Typical centralized cloud computing models may have difficulty dealing with challenges caused by IoT applications, such as network failure, latency, and capacity constraints. One of the introduced methods to solve these challenges is fog computing which makes the cloud closer to IoT devices. A system for dynamic congestion management brokerage is presented in this paper. With this proposed system, the IoT quality of service (QoS) requirements as defined by the service-level agreement (SLA) can be met as the massive amount of cloud requests come from the fog broker layer. In addition, a forwarding policy is introduced which helps the cloud service broker to select and forward the high-priority requests to the appropriate cloud resources from fog brokers and cloud users. This proposed idea is influenced by the weighted fair queuing (WFQ) Cisco queuing mechanism to simplify the management and control of the congestion that may possibly take place at the cloud service broker side. The system proposed in this paper is evaluated using iFogSim and CloudSim tools, and the results demonstrate that it improves IoT (QoS) compliance, while also avoiding cloud SLA violations.
Recently, many video streaming services, such as YouTube, Twitch, and Facebook, have contributed to video streaming traffic, leading to the possibility of streaming unwanted and inappropriate content to minors or individuals at workplaces. Therefore, monitoring such content is necessary. Although the video traffic is encrypted, several studies have proposed techniques using traffic data to decipher users' activity on the web. Dynamic Adaptive Streaming over HTTP (DASH) uses Variable Bit-Rate (VBR) -the most widely adopted video streaming technology, to ensure smooth streaming. VBR causes inconsistencies in video identification in most research. This research proposes a fingerprinting method to accommodate for VBR inconsistencies. First, bytes per second (BPS) are extracted from the YouTube video stream. Bytes per Period (BPP) are generated from the BPS, and then fingerprints are generated from these BPPs. Furthermore, a Convolutional Neural Network (CNN) is optimized through experiments. The resulting CNN is used to detect YouTube streams over VPN, Non-VPN, and a combination of both VPN and Non-VPN network traffic.
In recent years, video identification within encrypted network traffic has gained popularity for many reasons. For example, a government may want to track what content is being watched by its citizens, or businesses may want to block certain content for productivity. Many such reasons advocate for the need to track users on the internet. However, with the introduction of the secure socket layer (SSL) and transport layer security (TLS), it has become difficult to analyze traffic. In addition, dynamic adaptive streaming over HTTP (DASH), which creates abnormalities due to the variable-bitrate (VBR) encoding, makes it difficult for researchers to identify videos in internet traffic. The default quality settings in browsers automatically adjust the quality of streaming videos depending on the network load. These auto-quality settings also increase the challenge in video detection. This paper presents a novel ensemble classifier, E-Ensemble, which overcomes the abnormalities in video identification in encrypted network traffic. To achieve this, three different classifiers are combined by using two different combinations of classifiers: the hard-level and soft-level combinations. To verify the performance of the proposed classifier, the classifiers were trained on a video dataset collected over one month and tested on a separate video dataset captured over 20 days at a different date and time. The soft-level combination of classifiers showed more stable results in handling abnormalities in the dataset than those of the hard-level combination. Furthermore, the soft-level classifier combination technique outperformed the hard-level combination with a high accuracy of 81.81%, even in the auto-quality mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.