Fog computing has emerged as a revolutionary paradigm to serve the massive data generated in the Internet of Things (IoT) environments. It can be considered a derivative of cloud computing that provides cloud-like services at the edge of the network. As such, it helps address the, often significant, issue of delays encountered when using cloud systems for the IoT. According to the literature, inefficient scheduling of user tasks in fog computing can actually result in higher delays than cloud computing. Hence, the real benefits of fog computing can only be obtained by applying effective job scheduling strategies. In fact, task scheduling is an NP-hard problem and requires optimal and efficient techniques to address issues of latency, response time, and the efficient resource utilization of resources available at the edge of the network. Given this, we propose a novel bio-inspired hybrid algorithm (NBIHA) which is a hybrid of modified particle swarm optimization (MPSO) and modified cat swarm optimization (MCSO). In the proposed scheme, the MPSO is used to schedule the tasks among fog devices and the hybrid of the MPSO and MCSO is used to manage resources at the fog device level. In the proposed approach, the resources are assigned and managed on the basis of the demand of incoming requests. The main objective of the proposed work is to reduce the average response time and to optimize resource utilization by efficiently scheduling the tasks and managing the fog resources available. The simulations are performed using iFogSim. The evaluation results show that the proposed approach (NBIHA) shows promising results in terms of energy consumption, execution time, and average response time in comparison to the state-of-the-art scheduling techniques.INDEX TERMS Cloud computing, edge computing, fog computing, bio-inspired algorithms, task scheduling, resource management.
Cloud computing emerged as one of the leading computational paradigms due to elastic resource provisioning and pay-as-you-go model. Large data centers are used by the service providers to host the various services. These data centers consume enormous energy, which leads to increase in operating costs and carbon footprints. Therefore, green cloud computing is a necessity, which not only reduces energy consumption, but also affects the environment positively. In order to reduce the energy consumption, workload consolidation approach is used that consolidates the tasks in minimum possible servers. However, workload consolidation may lead to service level agreement (SLA) violations due to non-availability of resources on the server. Therefore, workload consolidation techniques should consider the aforementioned problem. In this paper, we present two consolidation based energy-efficient techniques that reduce energy consumption along with resultant SLA violations. In addition to that, we also enhanced the existing Enhanced-Conscious Task Consolidation (ECTC) and Maximum Utilization (MaxUtil) techniques that attempt to reduce energy consumption and SLA violations. Experimental results show that the proposed techniques perform better than the selected heuristic based techniques in terms of energy, SLA, and migrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.