Cloud computing has emerged as the leading paradigm for information technology businesses. Cloud computing provides a platform to manage and deliver computing services around the world over the Internet. Cloud services have helped businesses utilize computing services on demand with no upfront investments. The cloud computing paradigm has sustained its growth, which has led to increase in size and number of data centers. Data centers with thousands of computing devices are deployed as back end to provide cloud services. Computing devices are deployed redundantly in data centers to ensure 24/7 availability. However, many studies have pointed out that data centers consume large amount of electricity, thus calling for energy-efficiency measures. In this survey, we discuss research issues related to conflicting requirements of maximizing quality of services (QoSs) (availability, reliability, etc.) delivered by the cloud services while minimizing energy consumption of the data center resources. In this paper, we present the concept of inception of data center energy-efficiency controller that can consolidate data center resources with minimal effect on QoS requirements. We discuss software-and hardware-based techniques and architectures for data center resources such as server, memory, and network devices that can be manipulated by the data center controller to achieve energy efficiency.Index Terms-Controller design, data centers, energy efficiency.
In December 2019, a novel virus named COVID-19 emerged in the city of Wuhan, China. In early 2020, the COVID-19 virus spread in all continents of the world except Antarctica causing widespread infections and deaths due to its contagious characteristics and no medically proven treatment. The COVID-19 pandemic has been termed as the most consequential global crisis after the World Wars. The first line of defense against the COVID-19 spread are the non-pharmaceutical measures like social distancing and personal hygiene. The great pandemic affecting billions of lives economically and socially has motivated the scientific community to come up with solutions based on computer-aided digital technologies for diagnosis, prevention, and estimation of COVID-19. Some of these efforts focus on statistical and Artificial Intelligence-based analysis of the available data concerning COVID- 19. All of these scientific efforts necessitate that the data brought to service for the analysis should be open source to promote the extension, validation, and collaboration of the work in the fight against the global pandemic. Our survey is motivated by the open source efforts that can be mainly categorized as (a) COVID-19 diagnosis from CT scans, X-ray images, and cough sounds, (b) COVID-19 case reporting, transmission estimation, and prognosis from epidemiological, demographic, and mobility data, (c) COVID-19 emotional and sentiment analysis from social media, and (d) knowledge-based discovery and semantic analysis from the collection of scholarly articles covering COVID-19. We survey and compare research works in these directions that are accompanied by open source data and code. Future research directions for data-driven COVID-19 research are also debated. We hope that the article will provide the scientific community with an initiative to start open source extensible and transparent research in the collective fight against the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.