Study design Two-center retrospective cohort study. Objective The aim of this study is to investigate the clinical effectiveness and safety of the MCGR hybrid in terms of spinal growth, 3D correction, balance, and complications. Summary of background data The magnetic-controlled growing-rod (MCGR) growth instrumentation method has gained popularity for early onset scoliosis (EOS) treatment in the past years due to the non-invasiveness of the subsequent interval elongation procedures. To improve 3D correction and reduce the costs, we combined a single concave MCGR with a sliding rod on the convex side to control the apex. Methods A retrospective cohort study of 18 EOS children with an average 3-year follow-up (range 2.0-3.7) from two European spine centers treated with the single MCGR hybrid concept; 14 primary and 4 conversion cases. The primary and conversion cases were both evaluated preoperatively, postoperatively, 1 year, 2 years, and last follow-up. Results Mean age was 9.9 (SD ± 2.9 years). The average frontal Cobb angle was reduced from mean 65° to 30° postoperatively, and had increased to 37° at latest follow-up. Rotation of the apical vertebra improved from mean 27° to 20° postoperatively which was partially lost to 23°. Kyphosis and lordosis both increased by an average of 5° during the time of follow-up. Spinal balance was improved. The post-implantation T1-S1 spine growth rate averaged 10 mm/year at last follow-up. There were 13 implant-related complications in 6 out of 18 patients. No screw pull-outs and nor surgical site infections were registered. Conclusions This is the first medium-term results of a single MCGR hybrid construct. Maintenance of correction and growth are reasonable, and the complication rate is relatively low as compared to bilateral MCGR application. Level of evidence III.