Systematic conservation planning (SCP) deals with a delicate interplay of competing interests and has far-reaching impacts for all stakeholders and systems involved. While SCP has traditionally attempted to conserve ecosystem services that benefit ecological systems, public perceptions of conservation initiatives influence their ultimate feasibility and sustainability. In an attempt to balance ecological integrity, social utility, and urban development, this study develops a framework that applies four popular models to represent these competing factors, including two ecosystem services models-InVEST (Integrated Valuation of Environmental Services and Tradeoffs) for biophysical services (BpS), and SolVES (Social Values for Ecosystem Services) for social values (SV); a land use and land cover (LULC) suitability model; and Zonation for delimiting high priority areas. We also analyze a number of conservation scenarios that consider varying levels of urban development. While BpS are distributed with considerable spatial variability, SV spatially overlap. Approximately 6% of the area was identified as having both high BpS and SV, whereas a further 24.5% of the area was identified as either high BpS low SV or vise-versa. Urban development scenarios affected the conservation area selection drastically. These results indicate tradeoffs and potential synergies between development, SV, and BpS. Our findings suggest that the information provided by the proposed framework can assist in finding solutions to social-ecological planning complexities that serve multiple stakeholders.