Aim To evaluate geostatistical approaches, namely kriging, co-kriging and geostatistical simulation, and to develop an optimal sampling design for mapping the spatial patterns of bird diversity, estimating their spatial autocorrelations and selecting additional samples of bird diversity in a 2450 km 2 basin.
Location Taiwan.Methods Kriging, co-kriging and simulated annealing are applied to estimate and simulate the spatial patterns of bird diversity. In addition, kriging and co-kriging with a genetic algorithm are used to optimally select further samples to improve the kriging and co-kriging estimations. The association between bird diversity and elevation, and bird diversity and land cover, is analysed with estimated and simulated maps.
ResultsThe Simpson index correlates spatially with the normalized difference vegetation index (NDVI) within the micro-scale and the macro-scale in the study basin, but the Shannon diversity index only correlates spatially with NDVI within the micro-scale. Co-kriging and simulated annealing simulation accurately simulate the statistical and spatial patterns of bird diversity. The mean estimated diversity and the simulated diversity increase with elevation and decrease with increasing urbanization. The proposed optimal sampling approach selects 43 additional sampling sites with a high spatial estimation variance in bird diversity.Main conclusions Small-scale variations dominate the total spatial variation of the observed diversity due to a lack of spatial information and insufficient sampling. However, simulations of bird diversity consistently capture the sampling statistics and spatial patterns of the observed bird diversity. The data thus accumulated can be used to understand the spatial patterns of bird diversity associated with different types of land cover and elevation, and to optimize sample selection. Co-kriging combined with a genetic algorithm yields additional optimal sampling sites, which can be used to augment existing sampling points in future studies of bird diversity.
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
Systematic conservation planning (SCP) deals with a delicate interplay of competing interests and has far-reaching impacts for all stakeholders and systems involved. While SCP has traditionally attempted to conserve ecosystem services that benefit ecological systems, public perceptions of conservation initiatives influence their ultimate feasibility and sustainability. In an attempt to balance ecological integrity, social utility, and urban development, this study develops a framework that applies four popular models to represent these competing factors, including two ecosystem services models-InVEST (Integrated Valuation of Environmental Services and Tradeoffs) for biophysical services (BpS), and SolVES (Social Values for Ecosystem Services) for social values (SV); a land use and land cover (LULC) suitability model; and Zonation for delimiting high priority areas. We also analyze a number of conservation scenarios that consider varying levels of urban development. While BpS are distributed with considerable spatial variability, SV spatially overlap. Approximately 6% of the area was identified as having both high BpS and SV, whereas a further 24.5% of the area was identified as either high BpS low SV or vise-versa. Urban development scenarios affected the conservation area selection drastically. These results indicate tradeoffs and potential synergies between development, SV, and BpS. Our findings suggest that the information provided by the proposed framework can assist in finding solutions to social-ecological planning complexities that serve multiple stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.