In the present work the possibility of turbulence closure applying to improve barotropic jet instability simulation at coarse grid resolutions is considered. This problem is analogous to situations occurring in eddy-permitting ocean models when Rossby radius of deformation is partly resolved on a computational grid. We show that the instability is slowed down at coarse resolutions. As follows from the spectral analysis of linearized equations, the slowdown is caused by the small-scale normal modes damping arising due to numerical approximation errors and nonzero eddy viscosity. In order to accelerate instability growth, stochastic and deterministic kinetic energy backscatter (KEBs) parameterizations and scale-similarity model were applied. Their utilization led to increase of the growth rates of normal modes and thus improve characteristic time and spatial structure of the instability.