Background: Targeted hypothermia, as used after cardiac arrest, increases electrical and mechanical systolic duration. Differences in duration of mechanical and electrical systole are correlated to ventricular arrhythmias. The electromechanical window (EMW) becomes negative when electrical systole outlasts the mechanical systole. Prolonged electrical systole is also associated with electrical and mechanical dispersion, both predisposing for arrhythmias. The electromechanical relations during targeted hypothermia are unknown, but treatment after cardiac arrest has not demonstrated increased incidence of ventricular arrhythmic events.We wanted to explore the electromechanical relations during hypothermia at 33 °C. We hypothesized that targeted hypothermia would increase electrical and mechanical systolic duration without an increase in electromechanical negativity, nor an increase in electrical and mechanical dispersion. Methods: In a porcine model (n = 14) we registered electrocardiogram (ECG) and echocardiographic recordings during 38 °C and 33 °C, at spontaneous and atrial paced heart rate 100 beats/min. EMW was calculated by subtracting electrical systole, QT interval, from the corresponding mechanical systole, recorded from onset QRS to aortic valve closure. Electrical dispersion was measured as time from peak to end of the ECG T wave. Mechanical dispersion was calculated by strain echocardiography as standard deviation of time to peak strain. Results:Electrical systole increased during hypothermia at spontaneous heart rate (p < 0.001) and heart rate 100 beats/min (p = 0.005). Mechanical systolic duration was prolonged and outlasted electrical systole independently of heart rate (p < 0.001). EMW changed from negative to positive value (-20 ± 19 to 27 ± 34 ms, p = 0.001). The positivity was even more pronounced at heart rate 100 beats/min (-25 ± 26 to 41 ± 18 ms, p < 0.001). Electrical dispersion decreased (p = 0.027 and p = 0.003), while mechanical dispersion did not differ (p = 0.078 and p = 0.297).Conclusion: Targeted hypothermia increased electrical and mechanical systolic duration, the electromechanical window became positive, electrical dispersion was reduced and mechanical dispersion was unchanged. These alterations may have clinical importance. Further clinical studies are required to clarify whether corresponding electromechanical alterations are accommodating in humans.