BackgroundSystolic left ventricular function during therapeutic hypothermia is found both to improve and to decline. We hypothesized that this discrepancy would depend on the heart rate and the variables used to assess systolic function.MethodsIn 16 pigs, cardiac performance was assessed by measurements of invasive pressures and thermodilution cardiac output and with 2D strain echocardiography. Left ventricle (LV) volumes, ejection fraction (EF), transmitral flow, and circumferential and longitudinal systolic strain were measured. Miniaturized ultrasonic transducers were attached to the epicardium of the LV to obtain M-mode images, systolic thickening, and diastolic thinning velocities and to determine LV pressure-wall dimension relationships. Preload recruitable stroke work (PRSW) was calculated. Measurements were performed at 38 and 33°C at spontaneous and paced heart rates, successively increased in steps of 20 up to the toleration limit. Effects of temperature and heart rate were compared in a mixed model analysis.ResultsHypothermia reduced heart rate from 87 ± 10 (SD) to 76 ± 11 beats/min without any changes in LV stroke volume, end-diastolic volume, EF, strain values, or PRSW. Systolic wall thickening velocity (S′) and early diastolic wall thinning velocity decreased by approximately 30%, making systolic duration longer through a prolonged and slow contraction and changing the diastolic filling pattern from predominantly early towards late. Pacing reduced diastolic duration much more during hypo- than during normothermia, and combined with slow myocardial relaxation, incomplete relaxation occurred with all pacing rates. Pacing did not affect S′ or PRSW at physiological heart rates, but stroke volume, end-diastolic volume, and strain were reduced as a consequence of reduced diastolic filling and much more accentuated during hypothermia. At the ultimate tolerable heart rate during hypothermia, S′ decreased, probably as a consequence of myocardial hypoperfusion due to sustained ventricular contraction throughout a very short diastole.ConclusionsSystolic function was maintained at physiological heart rates during therapeutic hypothermia. Reduced tolerance to increases in heart rate was caused by lack of ventricular filling due to diastolic dysfunction and shorter diastolic duration.
Background:Targeted hypothermia, as used after cardiac arrest, increases electrical and mechanical systolic duration. Differences in duration of electrical and mechanical systole are correlated to ventricular arrhythmias. The electromechanical window (EMW) becomes negative when the electrical systole outlasts the mechanical systole. Prolonged electrical systole corresponds to prolonged QT interval, and is associated with increased dispersion of repolarization and mechanical dispersion. These three factors predispose for arrhythmias. The electromechanical relations during targeted hypothermia are unknown.We wanted to explore the electromechanical relations during hypothermia at 33 °C. We hypothesized that targeted hypothermia would increase electrical and mechanical systolic duration without an increase in EMW negativity, nor an increase in dispersion of repolarization and mechanical dispersion.Methods: In a porcine model (n = 14) we registered electrocardiogram (ECG) and echocardiographic recordings during 38 °C and 33 °C, at spontaneous and atrial paced heart rate 100 beats/min. EMW was calculated by subtracting electrical systole; QT interval, from the corresponding mechanical systole; QRS onset to aortic valve closure. Dispersion of repolarization was measured as time from peak to end of the ECG T wave. Mechanical dispersion was calculated by strain echocardiography as standard deviation of time to peak strain. Results:Electrical systole increased during hypothermia at spontaneous heart rate (p < 0.001) and heart rate 100 beats/min (p = 0.005). Mechanical systolic duration was prolonged and outlasted electrical systole independently of heart rate (p < 0.001). EMW changed from negative to positive value (-20 ± 19 to 27 ± 34 ms, p = 0.001). The positivity was even more pronounced at heart rate 100 beats/min (-25 ± 26 to 41 ± 18 ms, p < 0.001). Dispersion of repolarization decreased (p = 0.027 and p = 0.003), while mechanical dispersion did not differ (p = 0.078 and p = 0.297).Conclusion:Targeted hypothermia increased electrical and mechanical systolic duration, the electromechanical window became positive, dispersion of repolarization was slightly reduced and mechanical dispersion was unchanged. These alterations may have clinical importance. Further clinical studies are required to clarify whether corresponding electromechanical alterations are accommodating in humans.
Background Targeted hypothermia, as used after cardiac arrest, increases electrical and mechanical systolic duration. Differences in duration of electrical and mechanical systole are correlated to ventricular arrhythmias. The electromechanical window (EMW) becomes negative when the electrical systole outlasts the mechanical systole. Prolonged electrical systole corresponds to prolonged QT interval, and is associated with increased dispersion of repolarization and mechanical dispersion. These three factors predispose for arrhythmias. The electromechanical relations during targeted hypothermia are unknown. We wanted to explore the electromechanical relations during hypothermia at 33 °C. We hypothesized that targeted hypothermia would increase electrical and mechanical systolic duration without more profound EMW negativity, nor an increase in dispersion of repolarization and mechanical dispersion. Methods In a porcine model (n = 14), we registered electrocardiogram (ECG) and echocardiographic recordings during 38 °C and 33 °C, at spontaneous and atrial paced heart rate 100 beats/min. EMW was calculated by subtracting electrical systole; QT interval, from the corresponding mechanical systole; QRS onset to aortic valve closure. Dispersion of repolarization was measured as time from peak to end of the ECG T wave. Mechanical dispersion was calculated by strain echocardiography as standard deviation of time to peak strain. Results Electrical systole increased during hypothermia at spontaneous heart rate (p < 0.001) and heart rate 100 beats/min (p = 0.005). Mechanical systolic duration was prolonged and outlasted electrical systole independently of heart rate (p < 0.001). EMW changed from negative to positive value (− 20 ± 19 to 27 ± 34 ms, p = 0.001). The positivity was even more pronounced at heart rate 100 beats/min (− 25 ± 26 to 41 ± 18 ms, p < 0.001). Dispersion of repolarization decreased (p = 0.027 and p = 0.003), while mechanical dispersion did not differ (p = 0.078 and p = 0.297). Conclusion Targeted hypothermia increased electrical and mechanical systolic duration, the electromechanical window became positive, dispersion of repolarization was slightly reduced and mechanical dispersion was unchanged. These alterations may have clinical importance. Further clinical studies are required to clarify whether corresponding electromechanical alterations are accommodating in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.