The thermal conductivity (K) of Jezersko H4 meteorite was predicted by various models of rocks, using literature data on the chemical composition, porosity (P), and by relationships between thermal conductivity and porosity, and between thermal conductivity and thermal diffusivity (D). The results confirm that the porosity of the chondrite and air pressure significantly affect thermal conductivity. The thermal conductivity of the chondrite skeleton/matrix predicted by the modal composition of the meteorite and by the geometric mean model is equal to 4.35 W m−1 K−1, and by arithmetic and harmonic mean models: 4.9 W m−1 K−1at 300 K. Bulk thermal conductivity of the meteorite predicted by the geometric mean model is equal to 2.6 W m-1 K-1 for air pressure of 1 atm, and 1.0 W m−1 K−1in vacuum at 300 K. The Hashin–Shtrikman model predicts the values: 2.4 and 1.9 W m−1 K−1, the Clausius–Mossotti model: 2.2 and 1.9 W m-1 K-1, and the mean of two-layer models: 2.1 and 2.0 W m−1 K−1 at 300 K, for air pressure of 1 atm, and in vacuum, respectively. The relationships between thermal conductivity and porosity based on experimental data for ordinary chondrites indicate a mean K value for bulk thermal conductivity of the Jezersko meteorite in vacuum: 1.18 W m−1 K−1, and between thermal conductivity and thermal diffusivity the mean value: 1.12 W m−1 K−1at 200–300 K. The mean value for all predictions for bulk thermal conductivity of the meteorite for air at 1 atm is equal to 2.45 ± 0.30 W m−1 K−1 (range: 2.0–2.9 W m−1 K−1) at 300 K, and in vacuum: 1.40 ± 0.40 W m−1 K−1 (range: 0.95–2.0 W m−1 K−1) at 200–300 K. Predicted values of bulk thermal conductivity of the Jezersko meteorite, for air and in vacuum, are in the range of values recently reported by Soini et al. (2020) for the H4 group of chondrites: 2.8 ± 0.6 W m−1 K−1, mean K for air at 1 atm, and 1.9 ± 1.0 W m−1 K−1 mean K value in vacuum at 200–300 K.