2021
DOI: 10.1017/s1755020321000538
|View full text |Cite
|
Sign up to set email alerts
|

Szemerédi’s Theorem: An Exploration of Impurity, Explanation, and Content

Abstract: In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 62 publications
0
1
0
Order By: Relevance
“…That is, we suggest each theorem has structural content in the form of a mathematical structure, which has as its instances the ontological content of a theorem, as well as surrogate versions of the ontological content. Structural content has been proposed before as "the instantiation of a particular fundamental mathematical structure by the entities intuitively involved in the statement" [29], but for us the structural content will refer exactly to the structure itself. There are several variants of structuralism, with a distinction between eliminative structuralism (there are possible structures, but not actual ones) and non-eliminative structuralism (there are actual structures) [30].…”
Section: Structural Contentmentioning
confidence: 99%
“…That is, we suggest each theorem has structural content in the form of a mathematical structure, which has as its instances the ontological content of a theorem, as well as surrogate versions of the ontological content. Structural content has been proposed before as "the instantiation of a particular fundamental mathematical structure by the entities intuitively involved in the statement" [29], but for us the structural content will refer exactly to the structure itself. There are several variants of structuralism, with a distinction between eliminative structuralism (there are possible structures, but not actual ones) and non-eliminative structuralism (there are actual structures) [30].…”
Section: Structural Contentmentioning
confidence: 99%