Time-of-Flight data is typically affected by a high level of noise and by artifacts due to Multi-Path Interference (MPI). While various traditional approaches for ToF data improvement have been proposed, machine learning techniques have seldom been applied to this task, mostly due to the limited availability of real world training data with depth ground truth. In this paper, we avoid to rely on labeled real data in the learning framework. A Coarse-Fine CNN, able to exploit multi-frequency ToF data for MPI correction, is trained on synthetic data with ground truth in a supervised way. In parallel, an adversarial learning strategy, based on the Generative Adversarial Networks (GAN) framework, is used to perform an unsupervised pixel-level domain adaptation from synthetic to real world data, exploiting unlabeled real world acquisitions. Experimental results demonstrate that the proposed approach is able to effectively denoise real world data and to outperform stateof-the-art techniques.