Recent technological advancements allowed widening the applicability scope of the RFID (Radio Frequency Identification) technology from item identification to sensor-enabled computation platforms. This feature, added to the native radio energy-harvesting capability and the extremely low power consumption, has attracted the interest of research and industrial communities and pushed them to include the RFID technology into a global network of interconnected objects, as envisaged by the Internet of Things paradigm. In the last few years, standardization bodies have made significant efforts to design lightweight approaches, such as CoAP (Constrained Application Protocol), to efficiently manage resource-constrained nodes by using traditional web interfaces; nevertheless, RFID integration is not addressed yet. In this paper, we propose a CoAP-compliant solution where RFID tags, behaving as virtual CoAP servers, are directly accessible by remote CoAP clients via a reader, which acts as a CoAP proxy. A real testbed, addressing key aspects, such as tag addressing, discovery and management of CoAP requests via RFID operations, is deployed to validate the feasibility of the proposal. Experimental results show rapid response times: less than 60 ms are requested for resource retrieval, while from 80 to 360 ms for sending data to the RFID device, depending on the tag memory dimension.