Glass fiber (GF) reinforced polymer composites have attracted increasing attention due to their excellent performance. In this study, GF was coated by a thin layer of nickel, and then grafted carbon nanotubes (CNTs) array by a chemical vapor deposition method (CVD). The CNT contents can be varied by changing the CVD conditions. Three types of fillers, nickel coated GF (GF@Ni), GF with CVD grown CNTs (GF-CNTs) and nickel-coated GF with CVD grown CNTs (GF@Ni-CNTs), were used to prepare the epoxy composites. The electromagnetic interference shielding performances were investigated as a function of CNT contents. The GF@Ni-CNTs reinforced epoxy composites, which had the CNTs mass ratio of 9.2 wt% to the hybrids, showed the best EMI shielding performance among the composites. Their total EMI shielding effectiveness (SE) was higher than 35 dB in the range of 1-18 GHz, and above 50 dB in the X band. By incorporating the nickel layer on the GF surface, the same EMI performance can be achieved with lower CNTs content. For achieving a SE value of 35 dB in the X band, it