Oligomerization of isobutene is a very promising reaction not only for the production of isobutene oligomers such as trimers but also for the separation of isobutene from C 4 mixtures. Several solid acid catalysts have been applied for the continuous oligomerization of isobutene in liquid phase. This review analyzes the trimerization of isobutene over various solid acid catalysts such as zeolites, oxides (zirconias and titanias) and acid resins. Trimers selectivity increases with increasing isobutene conversion, irrespective of catalysts such as zeolites and acid resins. Very stable operation with high trimers selectivity is accomplished with WO x /ZrO 2 catalyst having tetragonal zirconia or various zeolite catalysts with high Lewis acid site-to-Brønsted acid site ratio (LA/BA ratio). For a good performance, acid resins should be macroporous and strong acid (sulphonic acid group) with high acid concentration. Inorganic catalysts are superior to acid resins because the deactivated inorganic materials can be regenerated by simple calcination. The WO x /ZrO 2 catalyst may be applied to a commercial process because about several thousand tons of isobutene can be oligomerized per one ton of zirconia catalyst in a catalytic cycle without regeneration. The oligomerization of isobutene may be improved further because the reaction has been started only recently and no research has been done for the optimization of the reaction and catalysts. It is expected to develop a new inorganic catalyst having suitable acidity, LA/BA ratio and phase, etc. by further research. The isobutene trimers, with or without hydrogenation, may be used for various purposes, and the importance of this trimerization reaction will be increased considering the expected surplus of isobutene due to the banned use of methyl-tert-butyl ether.