The interplay between nucleic acids
and lipids underpins several
key processes in molecular biology, synthetic biotechnology, vaccine
technology, and nanomedicine. These interactions are often electrostatic
in nature, and much of their rich phenomenology remains unexplored
in view of the chemical diversity of lipids, the heterogeneity of
their phases, and the broad range of relevant solvent conditions.
Here we unravel the electrostatic interactions between zwitterionic
lipid membranes and DNA nanostructures in the presence of physiologically
relevant cations, with the purpose of identifying new routes to program
DNA–lipid complexation and membrane-active nanodevices. We
demonstrate that this interplay is influenced by both the phase of
the lipid membranes and the valency of the ions and observe divalent
cation bridging between nucleic acids and gel-phase bilayers. Furthermore,
even in the presence of hydrophobic modifications on the DNA, we find
that cations are still required to enable DNA adhesion to liquid-phase
membranes. We show that the latter mechanism can be exploited to control
the degree of attachment of cholesterol-modified DNA nanostructures
by modifying their overall hydrophobicity and charge. Besides their
biological relevance, the interaction mechanisms we explored hold
great practical potential in the design of biomimetic nanodevices,
as we show by constructing an ion-regulated DNA-based synthetic enzyme.