In this study, we used rat animal model to compare the efficiency of indocyanine green (ICG)-assisted dental near-infrared fluorescence imaging with X-ray imaging, and we optimized the imaging window for both unerupted and erupted molars. The results show that the morphology of the dental structures was observed clearly from ICG-assisted dental images (especially through the endoscope). A better image contrast was easily acquired at the short imaging windows (<10 minutes) for unerupted and erupted molars. For unerupted molars, there is another optimized imaging window (48-96 hours) with a prominent glowin-the-dark effect: only the molars remain bright. This study also revealed that the laser ablation of dental follicles can disrupt the molar development, and our method is able to efficiently detect laser-treated molars and acquire the precise morphology. Thus, ICG-assisted dental imaging has the potential to be a safer and more efficient imaging modality for the real-time diagnosis of dental diseases.fluorescence dental imaging, indocyanine green, laser treatment, near-infrared, optimal imaging window