2018
DOI: 10.1016/j.eswa.2017.12.006
|View full text |Cite
|
Sign up to set email alerts
|

Taking advantage of multi-regions-based diagonal texture structure descriptor for image retrieval

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
18
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 28 publications
(20 citation statements)
references
References 39 publications
0
18
0
2
Order By: Relevance
“…[10] Attempted to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. [11] presented their work in the area of image organization and retrieval in Image Databases using global color features and spatial color distribution of images. They suggested extending the use of image histograms to characterize the global and local color properties of an image, moreover here the artificial neural network were used.…”
Section: IImentioning
confidence: 99%
“…[10] Attempted to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. [11] presented their work in the area of image organization and retrieval in Image Databases using global color features and spatial color distribution of images. They suggested extending the use of image histograms to characterize the global and local color properties of an image, moreover here the artificial neural network were used.…”
Section: IImentioning
confidence: 99%
“…Earlier years, manually managing and annotating images in large databases was time-consuming, labor-intensive, and errorprone. Thus, it is very necessary to build an efficient content-based image retrieval system [1][2][3][4][5][6][7][8][9].…”
Section: Introductionmentioning
confidence: 99%
“…Desde la última década, se han propuesto una gran cantidad de descriptores visuales (Wang et al 2011, Tian et al, 2014, Montazar et al, 2015, Calderón et al, 2016, Meng et al, 2017, Pedronette et al, 2017, Song et al, 2018, Meng et al, 2018, Ren et al 2014, Zhu et al 2014, Jegou et al 2012y Zhang et al 2015, por citar algunos. Estos descriptores se pueden clasificar en dos categorías dependiendo del tipo de características: globales o locales.…”
Section: Introductionunclassified
“…Los descriptores globales son vectores característicos con base en colores, formas y texturas que se extraen de la imagen completa, mientras que los descriptores locales extraen características de puntos relevantes que se encuentran en cierta región de la imagen. Wang et al (2011) combinan linealmente descriptores con base en el color, la forma y la textura para recuperar imágenes relevantes con respecto a una imagen de consulta dada, mientras que Calderon et al (2016) y Song et al (2018) desarrollaron descriptores con base en textura para imágenes específicas, tales como imágenes médicas y satelitales. Montazar y Giveki (2015) propusieron un descriptor local con base en SIFT (Scale Invariant Feature Transform).…”
Section: Introductionunclassified