In this paper, we propose a two-step method to recognize multiple-food images by detecting candidate regions with several methods and classifying them with various kinds of features. In the first step, we detect several candidate regions by fusing outputs of several region detectors including Felzenszwalb's deformable part model (DPM) [1], a circle detector and the JSEG region segmentation. In the second step, we apply a feature-fusion-based food recognition method for bounding boxes of the candidate regions with various kinds of visual features including bag-of-features of SIFT and CSIFT with spatial pyramid (SP-BoF), histogram of oriented gradient (HoG), and Gabor texture features.In the experiments, we estimated ten food candidates for multiple-food images in the descending order of the confidence scores. As results, we have achieved the 55.8% classification rate, which improved the baseline result in case of using only DPM by 14.3 points, for a multiple-food image data set. This demonstrates that the proposed two-step method is effective for recognition of multiple-food images.
In this paper, we propose a novel effective framework to expand an existing image dataset automatically leveraging existing categories and crowdsourcing. Especially, in this paper, we focus on expansion on food image data set. The number of food categories is uncountable, since foods are different from a place to a place. If we have a Japanese food dataset, it does not help build a French food recognition system directly. That is why food data sets for different food cultures have been built independently so far. Then, in this paper, we propose to leverage existing knowledge on food of other cultures by a generic "foodness" classifier and domain adaptation. This can enable us not only to built other-cultured food datasets based on an original food image dataset automatically, but also to save as much crowd-sourcing costs as possible.In the experiments, we show the effectiveness of the proposed method over the baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.