In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have periodicity and pattern similar to stable and unstable periodic orbits already existent for the unperturbed oscillator. These features indicate that the reported replicate periodic windows are associated with chaos control of the considered oscillators.