Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser, are recorded on an imaging plate for the electron imaging and on a CR-39 nuclear track detector for the proton imaging. The directional electron beam means the portion of the electron beam which is emitted along the same direction (i.e., target normal direction) as the proton beam. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of ~20 µm and ~10 µm diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration. The experimental and simulation results reveal various possible applications of the simultaneous, synchronized electron and proton sources to radiography and pump-probe measurements with temporal resolution of ~ps and spatial resolution of a few tens of µm.