Tumors induced in the rat by 1,2-dimethylhydrazine (DMH) contain mutations in β-catenin, but the spectrum of such mutations can be influenced by phytochemicals such as chlorophyllin (CHL) and indole-3-carbinol (I3C). In the present study, we determined the mutation status of β-catenin in more than 50 DMH-induced colon tumors and small intestine tumors, and compared this with the concomitant expression of β-catenin mRNA using quantitative real-time RT-PCR analysis. In total, 19/57 (33%) of the tumors harbored mutations in β-catenin, and 14/19 (74%) of the genetic changes substituted amino acids adjacent to Ser33, a key site for phosphorylation and β-catenin degradation. These tumors were found to express a 10-fold range of β-catenin mRNA levels, independent of the β-catenin mutation status and phytochemical exposure, i.e. CHL or I3C given post-initiation. However, β-catenin mRNA levels were strongly correlated with mRNA levels of c-myc, c-jun and cyclin D1, which are targets of β-catenin/Tcf signaling. Tumors with the highest levels of β-catenin mRNA often had over-expressed β-catenin protein, and those with lower β-catenin mRNA typically had low β-catenin protein expression, but there were exceptions (high β-catenin mRNA/low β-catenin protein, or vice versa). We conclude that DMH-induced mutations stabilize β-catenin protein in tumors, which increase c-myc, c-jun and cyclin D1, but there also can be over-expression of β-catenin itself at the mRNA level, contributing to high β-catenin protein levels. Similar findings have been reported in primary human colon cancers and their liver metastases, compared with matched normallooking tissue. Thus, further studies are warranted on the mechanisms that upregulate β-catenin at the transcriptional level in human and rodent colon cancers.