The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.
Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.
OBJECTIVE-An important mechanism in the pathogenesis of type 2 diabetes in obese individuals is elevation of plasma free fatty acids (FFAs), which induce insulin resistance and chronically decrease -cell function and mass. Our objective was to investigate the role of oxidative stress in FFA-induced decrease in -cell function. RESEARCH DESIGN AND METHODS-We used an in vivo model of 48-h intravenous oleate infusion in Wistar rats followed by hyperglycemic clamps or islet secretion studies ex vivo and in vitro models of 48-h exposure to oleate in islets and MIN6 cells.RESULTS-Forty-eight-hour infusion of oleate decreased the insulin and C-peptide responses to a hyperglycemic clamp (P Ͻ 0.01), an effect prevented by coinfusion of the antioxidants N-acetylcysteine (NAC) and taurine. Similar to the findings in vivo, 48-h infusion of oleate decreased glucose-stimulated insulin secretion ex vivo (P Ͻ 0.01) and induced oxidative stress (P Ͻ 0.001) in isolated islets, effects prevented by coinfusion of the antioxidants NAC, taurine, or tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl). Forty-eight-hour infusion of olive oil induced oxidative stress (P Ͻ 0.001) and decreased the insulin response of isolated islets similar to oleate (P Ͻ 0.01). Islets exposed to oleate or palmitate and MIN6 cells exposed to oleate showed a decreased insulin response to high glucose and increased levels of oxidative stress (both P Ͻ 0.001), effects prevented by taurine. Real-time RT-PCR showed increased mRNA levels of antioxidant genes in MIN6 cells after oleate exposure, an effect partially prevented by taurine. T ype 2 diabetes is characterized by both insulin resistance and defective insulin secretion (1). Obesity is the major predisposing factor for type 2 diabetes and is associated with excessive release of fatty acids from the expanded adipose tissue mass, leading to elevated plasma free fatty acids (FFAs), which are known to induce insulin resistance (2,3). Acute FFA exposure stimulates insulin secretion (4), but studies in vitro and in situ have shown that prolonged FFA exposure decreases glucose-stimulated insulin secretion (GSIS) (5). The effect of prolonged FFA elevation on -cell function in vivo has been more controversial, as absolute GSIS was found to be increased (6 -8), unchanged (9,10), or decreased (11-13) by FFA. However, in most of these studies -cell function was inadequate to compensate for FFA-induced insulin resistance (9 -13), at least in predisposed individuals (14). Although the mechanisms behind FFA-induced decrease in -cell function are unclear, one possibility points toward oxidative stress. Pancreatic -cells have low antioxidant defenses (15) and are thus susceptible to reactive oxygen species (ROS)-induced decrease in function and viability (16,17). Oxidative stress has been implicated in the decrease in GSIS induced by prolonged exposure to glucose (18,19), which is in many respects similar to that induced by prolonged exposure to FFA (4,20). However, whether oxidative stress plays a role in FFA-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.