The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.
Cellular asymmetry is critical for the development of multicellular organisms. Here we show that homologues of proteins necessary for asymmetric cell division in Caenorhabditis elegans associate with each other in mammalian cells and tissues. mPAR-3 and mPAR-6 exhibit similar expression patterns and subcellular distributions in the CNS and associate through their PDZ (PSD-95/Dlg/ZO-1) domains. mPAR-6 binds to Cdc42/Rac1 GTPases, and mPAR-3 and mPAR-6 bind independently to atypical protein kinase C (aPKC) isoforms. In vitro, mPAR-3 acts as a substrate and an inhibitor of aPKC. We conclude that mPAR-3 and mPAR-6 have a scaffolding function, coordinating the activities of several signalling proteins that are implicated in mammalian cell polarity.
The cytosolic 185 and 210 kDa Bcr‐Abl protein tyrosine kinases play important roles in the development of Philadelphia chromosome positive (Ph+) chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (Ph+ ALL). p185 and p210 Bcr‐Abl contain identical abl‐encoded sequences juxtaposed to a variable number of bcr‐derived amino acids. As the mitogenic and transforming activities of tyrosine kinases involve stimulation of the Ras pathway, we analyzed Bcr‐Abl oncoproteins for interactions with cytoplasmic proteins that mediate Ras activation. Such polypeptides include Grb2, which comprises a single Src homology 2 (SH2) domain flanked by two SH3 domains, and the 66, 52 and 46 kDa Shc proteins which possess an SH2 domain in their carboxy‐terminus. Grb2 associates with tyrosine phosphorylated proteins through its SH2 domain, and with the Ras guanine nucleotide releasing protein mSos1 through its SH3 domains. mSos1 stimulates conversion of the inactive GDP‐bound form of Ras to the active GTP‐bound state. In bcr‐abl‐transformed cells, Grb2 and mSos1 formed a physical complex with Bcr‐Abl. In vitro, the Grb2 SH2 domain bound Bcr‐Abl through recognition of a tyrosine phosphorylation site within the amino‐terminal bcr‐encoded sequence (p.Tyr177‐Val‐Asn‐Val), that is common to both Bcr‐Abl proteins. These results suggest that autophosphorylation within the Bcr element of Bcr‐Abl creates a direct physical link to Grb2‐mSos1, and potentially to the Ras pathway, and thereby modifies the target specificity of the Abl tyrosine kinase.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.