Customizable, high affinity protein-protein interactions, such as those mediated by antibodies and antibody-like molecules, are invaluable to basic and applied research and have become pillars for modern therapeutics. The ability to reversibly control the binding activity of these proteins to their targets on demand would significantly expand their applications in biotechnology, medicine, and research. Here we present, as proof-of-principle, a light-controlled monobody (OptoMB) that works in vitro and in vivo, whose affinity for its SH2-domain target exhibits a 300-fold shift in binding affinity upon illumination. We demonstrate that our αSH2-OptoMB can be used to purify SH2-tagged proteins directly from crude E. coli extract, achieving 99.8% purity and over 40% yield in a single purification step. This OptoMB belongs to a new class of light-sensitive protein binders we call OptoBinders (OptoBNDRs) which, by virtue of their ability to be designed to bind any protein of interest, have the potential to find new powerful applications as light-switchable binders of untagged proteins with high affinity and selectivity, and with the temporal and spatial precision afforded by light.