Pancreatic cancer is one of the malignant tumors with the worst prognosis, and the 5-year survival rate of this disease is less than 1%. About 90% of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), and targeting therapy has become a promising treatment for PDAC in recent years. To improve the survival rate, novel therapeutic targets for PDAC are still urgently needed. KIF18B was initially identified as a member of the kinesin family and involved in multiple cellular processes, such as separation of chromosomes in mitosis. Recently, it was found that KIF18B was involved in the growth and development of multiple cancers. However, the potential link between KIF18B and PDAC is still unclear. In this study, we demonstrated that KIF18B was highly expressed in human PDAC tissues, and related with the poor prognosis and clinical features, such as tumor size (*p = .013) and pTNM stage (*p = .025), of patients with PDAC. We further found that KIF18B knockdown blocked the cell proliferation of PDAC in vitro and in vivo, and the cell cycle was arrested caused by KIF18B depletion. Additionally, we also found that KIF18B bound to the promoter region of the cell division cycle associated 8 and thus activated its transcription. Taken together, this study explored the molecular mechanism underlying KIF18B promoting PDAC and provided a novel therapeutic target of this disease.
K E Y W O R D SCDCA8, KIF18B, pancreatic ductal adenocarcinoma, proliferation, therapeutic target