2003
DOI: 10.1080/0143116031000152291
|View full text |Cite
|
Sign up to set email alerts
|

Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
157
0
17

Year Published

2006
2006
2021
2021

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 371 publications
(174 citation statements)
references
References 8 publications
0
157
0
17
Order By: Relevance
“…Applying principle component analysis (PCA; for a full mathematical description, see Richards and Jia (2006;chapter 6.1)), or empirical orthogonal functions (EOFs; e.g., Denbo and Allen, 1984;Hamlington et al, 2011;Lorenz, 1956) allows the assessment of independent structures within complex data sets. Because both approaches share a similar methodology, here, PCA is used to determine which spatial factors are controlling patterns of LST within the time series.…”
Section: Principle Component Analysismentioning
confidence: 99%
“…Applying principle component analysis (PCA; for a full mathematical description, see Richards and Jia (2006;chapter 6.1)), or empirical orthogonal functions (EOFs; e.g., Denbo and Allen, 1984;Hamlington et al, 2011;Lorenz, 1956) allows the assessment of independent structures within complex data sets. Because both approaches share a similar methodology, here, PCA is used to determine which spatial factors are controlling patterns of LST within the time series.…”
Section: Principle Component Analysismentioning
confidence: 99%
“…Developed Selective Principal Component Analysis (DSPCA) has been successfully proposed and applied on previous Landsat data by (Crósta & Moore 1990), thus a DSPCA was carried out in order to map Al-OH bearing altered rocks in this study. The input data of this technique is a subset of spectral bands containing specific spectral characteristics of the target material (Crósta et al 2003). …”
Section: Resultsmentioning
confidence: 99%
“…Para cada periodo se estimó el Índice de Vegetación de Diferencia Normalizada (NDVI) (14 y 15, datos para invierno y verano, respectivamente) (Townshend et al, 1985). También se han aplicado una serie de algoritmos sobre las imágenes seleccionadas para obtener indicadores mineralógicos (Sabins, 1981;Crosta et al, 2003), mediante combinación de las siguientes funciones estandarizadas "Clay Minerals" (minerales de arcilla, CMI) (16 y 19), "Ferrous Minerals" (minerales ferrosos, FMI) (17 y 20) y "Iron Oxide" (óxidos de hierro, IOI) (18 y 21). Para cada una de las funciones se han realizado los cálculos correspondientes a la estación de verano (Julio) e invierno (Febrero).…”
Section: Iii2 Variables Ambientales Modelizadasunclassified