In the present study, the function of S100 calcium binding protein P (S100P) in the C666-1 nasopharyngeal carcinoma (NPC) cell line was examined. The levels of S100P protein in NPC tissues were analyzed using immunohistochemistry, and small interfering RNA silenced S100P expression in C666-1 cells. Subsequently, cell proliferation, colony formation, migration and wound-healing assays were performed in order to assess whether the knockdown of S100P was able to influence the biological behavior of C666-1 cells. The expression levels of the receptor for advanced glycation end products (RAGE) were analyzed using a western blot following the inhibition of S100P. The immunohistochemistry results revealed that S100P was elevated in expression in 45/78 (57.7%) of patients with NPC, as compared with 5/30 (16.7%) of patients with benign inflammation. The S100P protein levels correlated with the rates of proliferation and migration in C666-1 cells. Additionally, reduced S100P expression levels altered a series of intracellular events, including the downregulation of epidermal growth factor receptor, cluster of differentiation (CD) 44, matrix metalloproteinase (MMP) 2 and MMP9 protein expression. In addition, RAGE expression was downregulated in the S100P silenced C666-1 cells, as detected by western blot analysis. These data suggest that S100P is important during the development and progression of nasopharyngeal cancer. Therefore, S100P may provide a novel treatment target for NPC.