Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J Neurophysiol 94: 3795-3804, 2005. First published August 3, 2005 doi:10.1152/jn.00359.2005. It has been known for some time that populations of cutaneous and muscle afferents can provide short-latency facilitation of motoneuron pools. Recently, it has been shown that the input from individual low-threshold mechanoreceptors in the glabrous skin of the hand can modulate ongoing activity in muscles acting on the fingers via spinally mediated pathways. We have extended this work to examine whether such strong synaptic coupling exists between tactile afferents in the sole of the foot and motoneurons supplying muscles that act about the ankle. We recorded from 53 low-threshold mechanoreceptors in the glabrous skin of the foot via microelectrodes inserted percutaneously into the tibial nerve of awake human subjects. Reflex modulation of ongoing whole muscle electromyography (EMG) was observed for each of the four classes of low-threshold cutaneous mechanoreceptors (17 of 21 rapidly adapting type I; 2 of 4 rapidly adapting type II; 7 of 18 slowly adapting type I; and 4 of 10 slowly adapting type II). Reflex modulation of the firing probability in single motor units (5 of 11) was also observed. These results indicate that strong synaptic coupling between tactile afferents and spinal motoneurons is not a specialization of the hand and emphasizes the potential importance of cutaneous inputs from the sole of the foot in the control of gait and posture.