Tear toughness evaluation of a permanent mold cast A356 aluminum alloy was carried out by using two kinds of specimen with different size. One was equivalent to the specimen size designated in ASTM B871. The other one was about 30% as large as that of standard one in volume. Unit energies for tear fracture were obtained from load-displacement curves, and their specimen size, thickness and microstructure dependency were examined. Unit crack initiation energy (UEi) increased with increase in specimen thickness. Meanwhile, unit crack propagation energy (UEp) monotonically decreased in accordance with increase in specimen thickness. In order to make sure if the UEp values reflected the characteristics of local microstructure difference, the small-size tear specimens were collected from various parts in a single cast product. Larger UEp was obtained in the specimen with finer dendrite arm spacing (DAS). These findings suggest that the tear test using a smallsize specimen is useful for toughness evaluation of cast aluminum alloys.