Phishing emails represent a major threat to online information security. While the prevailing research is focused on users' susceptibility, few studies have considered the decision-making strategies that account for skilled detection. One relevant facet of decision-making is cue utilization, where users retrieve feature-event associations stored in long-term memory. High degrees of cue utilization help reduce the demands placed on working memory (i.e., cognitive load), and invariably improve decision performance (i.e., the information-reduction hypothesis in expert performance). The current study explored the effect of cue utilization and cognitive load when detecting phishing emails. A total of 50 undergraduate students completed: (1) a rail control task; (2) a phishing detection task; and (3) a survey of the cues used in detection. A cue utilization assessment battery (EXPERTise 2.0) then classified participants with either higher or lower cue utilization. As expected, higher cue utilization was associated with a greater likelihood of detecting phishing emails. However, variation in cognitive load had no effect on phishing detection, nor was there an interaction between cue utilization and cognitive load. Further, the findings revealed no significant difference in the types of cues used across cue utilization groups or performance levels. These findings have implications for our understanding of cognitive mechanisms that underpin the detection of phishing emails and the role of factors beyond the information-reduction hypothesis.