2018
DOI: 10.1002/mp.13296
|View full text |Cite
|
Sign up to set email alerts
|

Technical Note: More accurate and efficient segmentation of organs‐at‐risk in radiotherapy with convolutional neural networks cascades

Abstract: Purpose: Manual delineation of organs-at-risk (OARs) in radiotherapy is both time-consuming and subjective. Automated and more accurate segmentation is of the utmost importance in clinical application. The purpose of this study is to further improve the segmentation accuracy and efficiency with a novel network named Convolutional Neural Networks (CNN) Cascades. Methods: CNN Cascades was a two-step, coarse-to-fine approach that consisted of a Simple Region Detector (SRD) and a Fine Segmentation Unit (FSU). Th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
56
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 53 publications
(57 citation statements)
references
References 34 publications
0
56
0
1
Order By: Relevance
“…Parotid glands DC (%) 92 AE 4, 37 91 AE 2, 75 88 AE 2, 46 91 m;f (N), 45 88, 53 87 AE 3(N), 60 87 AE 4 (N), 24 87, 64 86 AE 2 (N), 40 86 AE 3, 48 86 AE 4, 24 86 AE 5 (N), 31 86 AE 5, 42 86 AE 5, 40 86 AE 7, 93 91 m;f , 72 85 AE 2, 83 85 AE 3, 26 85 AE 4, 91 85 AE 4, 30 85 AE 5, 47 91 m;f (DL), 29 85, 60 84 AE 3, 34 84 AE 3 (N), 55 84 AE 4 (•), 60 84 AE 7 (N,IM), 66 84, 76 91 m;f , 22 91 m;f , 23 83 AE 2, 50 83 AE 3, 58 83 AE 5 (•), 36 83 AE 5, 86 83 AE 6, 36 83 AE 6 (N), 56 91 m;f , 95 91 m;f , 81 AE 4 (N), 70 81 AE 5, 28 81 AE 8 (N), 49 81 AE 8, 27 81 (N), 54 91 m;f , 52 91 m;f (ABAS), 29 79 (MR), 68 91 m;f , 77 79, 87 79, 57 77 AE 6, 65 91 m;f (N), 69 91 m;f (N), 35 76 AE 6, 63 76 (CT), 68 91 m;f , 35 75, 51 72 AE 10, …”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…Parotid glands DC (%) 92 AE 4, 37 91 AE 2, 75 88 AE 2, 46 91 m;f (N), 45 88, 53 87 AE 3(N), 60 87 AE 4 (N), 24 87, 64 86 AE 2 (N), 40 86 AE 3, 48 86 AE 4, 24 86 AE 5 (N), 31 86 AE 5, 42 86 AE 5, 40 86 AE 7, 93 91 m;f , 72 85 AE 2, 83 85 AE 3, 26 85 AE 4, 91 85 AE 4, 30 85 AE 5, 47 91 m;f (DL), 29 85, 60 84 AE 3, 34 84 AE 3 (N), 55 84 AE 4 (•), 60 84 AE 7 (N,IM), 66 84, 76 91 m;f , 22 91 m;f , 23 83 AE 2, 50 83 AE 3, 58 83 AE 5 (•), 36 83 AE 5, 86 83 AE 6, 36 83 AE 6 (N), 56 91 m;f , 95 91 m;f , 81 AE 4 (N), 70 81 AE 5, 28 81 AE 8 (N), 49 81 AE 8, 27 81 (N), 54 91 m;f , 52 91 m;f (ABAS), 29 79 (MR), 68 91 m;f , 77 79, 87 79, 57 77 AE 6, 65 91 m;f (N), 69 91 m;f (N), 35 76 AE 6, 63 76 (CT), 68 91 m;f , 35 75, 51 72 AE 10, …”
Section: Resultsmentioning
confidence: 99%
“…Eyeballs and vitreous humor (VH) DC (%) 96 AE 1 (VH), 97 95, 60 95 AE 2, 43 94, 33 91 m;f (DL), 29 93 AE 1, 48 93 AE 4, 47 92 AE 2 (•), 60 92 AE 2, 30 91 AE 2 (•), 36 ASD (mm) ASD91 m;f : 1.0 (VH), 99 1.2(0.9,1.8) (VH) 98 ; ASD91 m;f : 0.6(0.8) (+eye muscles) 79 ; DTA91 m;f : 2.0 (MR), 68 Optic chiasm DC (%) 91 m;f , 88 71 AE 9, 43 64 AE 16, 30 62 AE 17, 27 61 AE 6 (N), 24 59 AE 7, 40 59 AE 10 (N), 40 59 AE 14, 24 58 AE 10 (N), 55 58 AE 17 (N), 54 57 AE 13 (N, UB), 66 91 m;f , 73 53 AE 15, 46 52 AE 11 (N), 70 91 m;f , 22 45 AE 17 (N), 31 42 AE 17 (N), 49 91 m;f , 38 41(0,58), 94 41 AE 14, 36 37 AE 13, 65 37 AE 18, 89 91 m;f (N), 35 24 AE 15 59 VC (%) TPR: 68 AE 8 (N), 40 64 AE 11 (N), 24 64 AE 15, 24 61 AE 5, 40 61 AE 10 (N), 55 50 AE 25 (N), 31 48 AE 31 59 ; PPV: 65 AE 8, 40 61 AE 12 (N), 24 56 AE 10 (N), 55 56 AE 11 (N), 40 56 AE 16,…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…While some organs, such as the optic nerve, are systematically segmented during radiotherapy planning, annotation of other structures may be available only for a subset of patients. One solution to this problem is to independently train one model per class, as it was proposed in some recent deep learning works [28,22,33]. A limitation of this approach is, however, the need to perform time-consuming trainings for every class, while the number of classes of interest may be large.…”
Section: Introduction and Related Workmentioning
confidence: 99%
“…In recent years, owing to the development of deep convolutional neural networks (DCNNs), several automated methods have been proposed to address the problem of dose prediction [2][3][4][5] and organ segmentation [6][7][8][9] based on DCNNs. However, the previous studies either focused on organ segmentation or dose prediction, without considering them from a holistic perspective.…”
Section: Introductionmentioning
confidence: 99%