Abstract. Light-absorbing impurities affect snow and ice via a decrease in albedo and a consequent disturbance to the radiative energy balance. Experimentally, these matters have only been examined in a few studies. Here we present results from a series of experiments in which we deposited different soot concentrations onto natural snow in different regions of Finland, and thereafter monitored the changes of the snowpack through the melting season. Measurements of the particulates in the snow indicated concentrations in the range of thousands of ppb to have clear effects on the snow properties, including the albedo, the physical snow characteristics, and an increased melt rate. For soot concentrations in the hundreds of ppb range, the effects were not as clearly visible, and it was more difficult to attribute the effects solely to the soot on the snow. Comparisons between our experimental data and the widely used Snow, Ice and Aerosol Radiation (SNICAR) model showed a general agreement when the model was specifically tuned to our measurements. This study highlights the importance of additional experimental studies, to further articulate and quantify the effects of light-absorbing impurities on snow.