Inductively coupled plasma mass spectrometry is a powerful analytical technique. Because of its sensitivity, accuracy, multielement capability, high throughput, rapid analysis times and low detection limits, it is able to determine simultaneously long-lived radionuclides at trace and ultra-trace levels as well as isotope ratios. It has been increasingly applied in the framework of rare events experiments like those investigating the nature of dark matter and neutrinos, where the screening and selection of extremely radiopure materials for the experimental apparatus is crucial. Here, the inductively coupled plasma mass spectrometry (ICP-MS) measurements of the chemical purity of a Cs2HfCl6 crystal scintillator used to study α decay of naturally occurring Hf isotopes and its own raw materials are reported. Moreover, in the framework of the GERDA/LEGEND experiment, an overview of the ICP-MS results to monitor the recycling process of enriched germanium scraps is shown. Significant outcomes, such as low detection limits despite the small amount of sample to analyze and fast ICP-MS results, have been achieved in response to the challenges required by modern low background experiments.